
NAVAL POSTGRADUATE SCHOOL
Monterey California

0D0

DTIC

TSEP 1 3 19881
S~~THESIS '

A DATA ORIENTED APPROACH TO
INTEGRATING MANUFACTURING FUNCTIONS IN

FLEXIBLE MANUFACTURING SYSTEMS

by

David R. Fleischman

June 1988

Thesis Advisor: C. Thomas Wu

Approved for public release; distribution is unlimited

88 9 12 049

F, CL,.-v C-ASS A C7 -"§" - _

REPORT DOCUMENTATION PAGE

'a REPORT SECR1rV C.-,SS,;: •A 0o RESTR CI VE MARKNGS

Unclag'ci feipd
2.a SEC•RI'Y C.ASS ; CA' ON - 3 JISTR'B1jT ON AVAfLA8ILiA V OF REPORr

2b DEC-ASSFCA, ON DOvRNGRADJG iC-EZDu. - Approved for public release;
Distribution is unlimited

4 PERFORMtNG ORGA. L"'ON REPORT %LMBEP(S) S MONITORING ORGANIZATION REPOR
T

,MEP(S)

6a NAME OF PERFORMNO ORG;'%.ZA" ON 6o OFF CE SYMBOL 7a NAME OF MONITORING ORGANIZATON

(If applicable)

Naval Postgraduate School Code 52 Naval Postgraduate School

6c. ADDRESS C, ty. State. and ZIP Code) 7b ADDRESS(City. State, and ZIP Code)

Monterey, California 93943-5000 Monterey, California 93943-5000

Ba NAME OF :-NC SPONSORýNG 8b OFF.CE SYMBOL 9 PROCUREMENT ,NSTRUMENT IDENTIFICAT ON NUMBER

ORGAN.ZA .ON (If applicable)

Sc ADDRESS (City. State. and ZIP Code) 10 SOURCE OF FUNDING NUMBERS

PROGRAM PROJECT TASK WORK UNIT

I ELEMENT NO NO
NO

ACCESSiON NO

'1 TITLE (Include Security Classification)

A Data Oriented Approach to Integrating Manufacturing Functions in Flexible Manufacturing
Systems,.

12 PERSONAI a1JTg)RIS.
Fleischman, David R.

13a TYPE 0 REPOR' 3b IME COvERED 14 DATE OF REPORT (Year, Month, Day) 1S PAGE COUNT

Masters Thesis -ROM TO 1988 June 88

16 SUPPLEMENTARv NOTAT'ON
The views expressed in this thesis are those of the author and do not reflect the official

policy or position of the Department of Defense or the U.S. Government

17 COSATI CODES 18 SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

FIELD GROUP SB-GROLP YComputer Integrated Manufacturing; Flexible Manufacturing

Systems; data modeling .-- ,... - -

ABSTRACT (Continue on reverse if neceltarv and identify by block number)

'tomputer Integrated Manufacturing (CIM) seeks to integrate computers into the manufacturing

environment, with the end result being a more efficient and productive factory. Current

approaches to CIM generally fail te truly integrate the various manufacturing functions

(design, scheduling, planning, manufacture, business, etc.) and instead result in self-

sufficient, computer-served "islands of automation." In these systems, data must be

translated before moving from one manufacturing function to another.

Wu and Madison have approached data modeling in a CIM environment from a new

perspective. Their approach seeks to provide one data model that meets the needs of all

manufacturing functions within a factory, negating the need for human or machine data

translators. r . -

In this thesis, we review the work done by Wu and Madison and apply their data model
to a particular manufacturing function, the Flexible Manufacturing System (FMS).

20 DiSTRIBUTIONAVAILABILITY OF ABSTRACT 21 ABSTRACT SECURITY CLASSIFICATION

F UNCLASSIED,,UNLMI'ED C SAME AS ROT 0 DTIC USERS l vpl -n1 if4-A

22a NAME OF RESPONS)BLE INDIVIDUAL 22b TELEPHONE (include Area Code) ýjc OFFICE SYMBOL

Professor C. Thomas Wu (408) 646-3391 1 Crdlp I

DD FORM 1473, 84 MAR 83 APR ed.ton may te Used until exhausted SECURITY CLASSIFICATION OF THIS PAGE

All other editions are obsolete * U.S. Govifment 0viitisl OQfife ,966-4G--24.

i UNCLASSIFIED

Approved for public release. distribution is unlimited.

A Data Oriented Approach to
Integrating Manufacturing Functions in

Flexible Manufacturing Systems

by

David R. Fleischman
Lieutenant Commander, United States Navy
B.S., United States Naval Academy, 1976

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL

June 1988

^tnJfor. viR
David R. Fleischman

Approved by: Cviso

C .Thra/ •uTessAdio

Dana E. Madison, Second Reader

Robert B. McGhee, Acting Cairman
Department of Science

,i Fremgen,\g enof J~ormation adPolic Sine

ABSTRACT

Computer Integrated Manufacturing (CIM) seeks to integrate computers into the

manufacturing environment, with the end-result being a more efficient and productive

factory. Current approaches to CIM generally fail to truly integrate the various

manufacturing functions (design, scheduling, planning, manufacture, business, etc.) and

instead result in self-sufficient, computer-served islands of autontation. In these systems,

data must be translated before it moves from one manufacturing function to another.

Wu and Madison have approached data modeling in a CIM environment from a new

perspective. Their approach seeks to provide one data model that meets the needs of all

manufacturing functions within a factory, negating the need for human or machine data

translators.

In this thesis, we review the work done by Wu and Madison and apply their data

model to a particular manufacturing function, the Flexible Manufacturing System (FMS).

.T.G . jII!--
Cor

ii.i 1

THIS DOCUMENT IS BEST

QUALITY AVAILABLE. THE COPY

FURNISHED TO DTIC CONTAINED

A SIGNIFICANT NUMBER OF

PAGES WHICH DO NOT

REPRODUCE LEGIBLY.

TABLE OF CONTENTS

1. INTRODUCTION .. I
A. OVERVIEW ... I
B. HISTORICAL BACKGROUND ... I
C. THE NEED FOR COMPUTER INTEGRATED MANUFACTUR-
IN G ... 3

[I. CURRENT APPROACHES TO CIM ... 5
A. INTRODUCTION ... 5
B. COMPUTER INTEGRATED MANUFACTURING DEFINED 5
C. THE PROCESS OF INTEGRATION .. 6
D. CURRENT APPROACHES TO INTEGRATION 6

1. The High Level Approach ... 7
2. The Centralized Database Approach ... 7
3. The Low Level Approach ... 10
4. Selection of an Approach .. 10

E. THE DATA M ODEL ... 11
1. Classical Data M odels .. 13

a. Hierarchical ... 13
b. Network .. 17
c. Relational ... 19
d. Shortcomings of Classical Data M odels 20

2. Higher-level Data M odels ... 21
a. Introduction ... 21
b. Abstraction Concepts .. 22

(1) Generalization/Specialization ... 22
(2) Aggregation .. 23
(3) Association .. 24
(4) Version Generalization .. 24
(5) Instantiation .. 26
(6) Version Hierarchy .. 28
(7) Instance Hierarchy .. 28

c. Current Sem antic M odels .. 30
(1) Entity-Relationship (E-R) M odel 31

(2) Functional M odel ... 31
(3) SAM * ... 32

iv

S. . . .n mph.~m nlm lI

(4) RM /T ... 32
(5) Extended Semantic Hierarchy Model 32

(6) TAXIS ... 33
(7) Object-Oriented M odels .. 33

III. THE M ANUFACTURING DATA M ODEL .. 34

A. INTRODUCTION .. 34

B. DATA M ODEL DESCRIPTION ... 34
1. M olecular Aggregation .. 37
2. Generalization .. 37
3. Version Hierarchy ... 39
4. Instantiation 42
5. Instance Hierarchy .. 44

C. FORM AL M ODEL DEFINITION ... 45
IV. THE FLEXIBLE MANUFACTURING SYSTEM .. 47

A. INTRODUCTION .. 47
B. FM S HISTORY 48
C. FM S SYSTEM ARCHITECTURE .. 49

1. Ranky's Rules ... 49
a. Cells .. 49
b. Transportation System .. 49
c. Storage Facility ... 49

d. Computer Control .. 49
e. Reliability and Flexibility ... 50

2. System Configuration .. 50
a. Control System .. 50
b. Functional Cell ... 50
c. Transportation System ... 50

d. Autom atic Tool Changing Cell .. 50
e. Storage Facility ... 50
f. An Example of FM S ... 51

D. SCHEDULING A FM S .. 52
V. APPLYING THE MANUFACTURING DATA MODEL 54

A. INTRODUCTION .. 54

B. THE CONVENTIONAL APPROACH TO PROCESS PLANNING
.. ... 5 5

C. THE MANUFACTURING DATA MODEL APPPOACH 55
D. FLEXIBLE MANUFACTURING SYSTEMS ... 61

E. APPLYING THE MANUFACTURING DATA MODEL TO FMS 63

F. A FM S EXAM PLE .. 69

v

G . CO N CLU SIO N S ... 74
LIST O F REFEREN CES ... 77
IN ITIA L DISTRIB UTION LIST ... 79

'Ti

LIST OF FIGURES

Figure 1. High Level Integration .. 8
Figure 2. Centralized Database Approach ... 9
Figure 3. Example of Database Schema .. 13

Figure 4. Intension of a Hierarchical Database ... 14

Figure 5. Extension of a Hierarchical Database .. 15
Figure 6. Many-to-Many Relationship Represented by Duplication 16
Figure 7. Many-to-Many Relationship Represented by Artificial Segment 17
Figure 8. Example of a Network Database ... 18
Figure 9. Example of Relation .. 20
Figure 10. Generalization and Specialization ... 22
Figure 11. A ggregation .. 24
Figure 12. A ssociation ... 25
Figure 13. Version Generalization ... 26
Figure 14. Instantiation .. 27
Figure 15. Version Hierarchy ... 29
Figure 16. Instance Hierarchy .. 30
Figure 17. Conceptual Schema of Type SHIP .. 36
Figure 18. Example of Aggregation .. 38
Figure 19. Example of Generalization .. 39
Figure 20. Example of a Version of a Type ... 40
Figure 21. Comparison of Version Hierarchies ... 43
Figure 22. Example of Instantiation Inheritance ... 44
Figure 23. Operation of the Manufacturing Data Model ... 46
Figure 24. Simple Flexible Manufacturing System ... 51
Figure 25. Graph of Alternative Process Plans .. 57
Figure 26. Conceptual Schema for Product Type Can Opener 58
Figure 27. Version Hierarchy for Product Type Can Opener 60
Figure 28. Updated Version Hierarchy for Product Type Can Opener 61
Figure 29. Simple Flexible Manufacturing System ... 62
Figure 30. Example of Generalization/Specialization in FMS 65
Figure 31. Example of Versions in FMS 66
Figure 32. Instantiation 67
Figure 33. Version Hierarchy of FMS Program Manufacture Crankshaft 69
Figure 34. Conceptual Schema of FMS Programs .. 70

vii

Figure 35. Instance of Program Type Manufacture on FMS 71
Figure 36. Simplified Examples of Subprograms .. 72
Figure 37. Primitive Level Programs ... 73

VIII

I. INTRODUCTION

A. OVERVIEW

As the computer moved from the laboratory of the scientist into the office of the

engineer and, finally, into the factory, manufacturers had high expectations. A new

technology, which came to be known as Computer Integrated Manufacturing (CIM), held

great promise in terms of cutting costs, increasing efficiency, and raising profits. It

appeared to be a simple problem on the surface, integrating computers into the factory.

Once installed, computers, the purported "cure-all" for industry, would solve all the

problems associated with design, production, scheduling, and analysis and forecasting of

market conditions. What held great promise a decade ago, though, still has yet to be

fully implemented in the factory. This thesis examines why this is so, offers a potential

solution, and implements the proposed solution in a Flexible Manufacturing System

(FMS) environment.

B. HISTORICAL BACKGROUND

Within the last fifteen years, the manufacturing industry has undergone major

changes in an effort to keep pace with an ever-changing marketplace. What had been a

personal relationship between designer and machinist rapidly evolved into a complex

process utilizing specially-trained personnel, sophisticated data and comnunications

handling equipment, and advanced machine tools [Ref. 11. This evolution naturally led

to a fragmentation of the design and production processes as the need for specialized

people to handle specialized tasks became apparent. With this fragmentation, in turn,

was lost much of the gain in efficienct and productivity which specialization brought.

Fragmentation meant increased overhead as more people and more equipment were

I I • I • II I I | II i i .1

required to manage and control the necessary systems to move information and materials.

Computers were introduced in small pans of companies to assist in this management and

control function, further fragmenting the whole process. The end result was highly-

specialized "cells" within a company composed of people and machines tasked to

perform one or a small number of missions. Few, if any, people had an understanding of

the entire manufacturing process from design to finished product.

Overall, the improvements in efficiency and productivity were not as great as had

been expected due, in large part, to the approach to the problem. Rather than viewing the

application of automation and computers in terms of the overall manufacturing process, a

very narrow approach was used, applying automation only to the individual phases of the

overall process.

Computers were also introduced into other facets of manufacturing. Dynamically

programmable machines, first numerical control (NC) machines using paper-tapes, and

later, computer numerical control (CNC) machines, streamlined the various

manufacturing processes. Data management systems replaced manual inventory control

and accounting systems, hus increasing the ability of management to control the

growing business, Computer Aided Design (CAD), the process of computer-assisting the

human engineer to convert his ideas and knowledge into mathematical and graphical

models, greatly expedited the design process, The net effect of this automation effort

was a significant increase in productivity, efficiency, cost savings, quality; all factors

vital to the flourishing of an enterprise. Unfortunately, this effort carried with it the

unwanted side effect of an uncontrolled, fragmented management information system.

As the factory and the front-office were automated, the need for interoperability was

often ignored, resulting in the inability to communicate or exchange data among the

various entities within the business. Design could not pass information to

2

Manufacturing, Manufacturing received orders manually from Customer Service, and

Shipping hand-carried invoices to Customer Service; incompatability and fragmentation

were rampant. Each department was automated and internally efficient, yet external

interactions were slow and inefficient. The need to integrate these islands of automation;

isolated activities within the larger enterprise, each employing incompatible automation

techniques, became apparent.

C. THE NEED FOR COMPUTER INTEGRATED MANUFACTURING

Initially. it was the manufacturing people, the mechanical and industrial engineers,

who expressed the need to make these diverse computer systems corrm-unicate with each

other. They foresaw a system which allowed, for instance, design data for a product from

a Computer-Aided Design (CAD) system to be used directly by a Computer-Aided

Manufacturing (CAM) system for process planning. The first approach to providing

integrated, computer-supported manufacturing was the development of a translator, or

interface, to convert data from the format used by one computer into another format

required by a different computer. The advantage of this approach is that it does not

require any modifications to existing systems, however, it really does not integrate the

various phases of the overall process, it merely connects them. Additionally, it

introduces the problem of software maintenance; as any component in the system is

modified, the translator must be rewritten or modified. This approach has proven

effective as a short-term solution, but does not provide the answer to the need for true

integration [Ref. 21.

A second approach has been developed by the Society of Manufacturing Engineers

(SME), the CIM Enterprise Wheel. This approach features a centralized data

management system and, on the surface, appears to meet the need for a method of

providing data across the entire spectrum of manufacturing phases. However.

3

implementation is difficult with current database management systems. According to

some within the database community, the relational database management system is not

able to handle the complexities of the manufacturing environment2 . It is the opinion of

these people that either an improved relational system must be developed, or a

completely new approach to serving data be investigated.

This new approach involves looking at the centralized data servei not as a physical

entity but as a logical one; actually a common data model meeting the needs of all phases

of the manufacturing process. This approach, with one major modification, is the one

which shows the greatest potential for truly integrating all aspects of manufacturing. If

true integration is the goal, then it is the model derived from this approach which holds

great promise for achieving that goal. We intend to attack the problem of true

integration, in the context of FMS, in this thesis.

This thesis is organized as follows: Chapter 2 provides several definitions of CI1M,

as well as a review of several data models currently used to support CIM and the

shortcomings of these models; Chapter 3 reviews the an innovative data-oriented

approach to CIM, a method which looks at the problem of integration from a data-

oriented perspective rather than the traditional process-oriented point of view; Chapter 4

describes FMS; and in Chapter 5, we apply the Manufacturing Data Model to a FMS

application and make observations regarding the fitness of this model for accomplishing

the integration in CIM.

4

II. CURRENT APPROACHES TO CIM

A. INTRODUCTION

In this chapter, we introduce a number of definitions of Computer Integrated

Manufacturing (CIM), discuss three current approaches to CIM, describe the data models

used to support these approaches and the modeling abstractions which apply, and

conclude with a discussion of the shortcomings of these approaches.

B. COMPUTER INTEGRATED MANUFACTURING DEFINED

There are almost as many definitions of CIM as there are papers and texts on the

subject. The following definitions cover the spectrum of what is generally regarded as

CIM:

* CIM is a series of interrelated activities and operations involving the design,
material selection, planning, production, quality assurance, management, and
marketing of discrete consumer and durable goods [Ref. 31;

* CIM is a network of computer systems integrating the various manufacturing
processes [Ref. 1];

* CIM is the deliberate integration of automated systems into processes resulting in

the production of a product [Ref. I];

* CIM is the logical organization of individual engineering, production, and
marketing/support functions into a computer integrated system [Ref. 11;

* CIM is the phased implementation of automated and non-automated systems to
support the manufacturing environment [Ref. I];

* CIM is an information structure providing a flow of data needed by the various
functions in the manufacturing process [Ref. 11;

* CIM is a strategy, incorporating computers, to link existing technology and people

to optimize business activity [Ref. 41.

While some definitions summarize the objectives and meaning of CIM better than others,

all support the overall goal of CIM - to complete production of an end-item in the

5

simplest and most timely fashion, with a minimum of human interventior, with a

minimum of interruptions in the flow of all required processes and at minimum cost.

Implementation of CIM should mean real-time shared access to all data by those people

and processes requiring access, as well as better quality products, shorter response time

to design changes, shorter design and production times, and more efficient processing of

small orders [Ref. 11.

C. THE PROCESS OF INTEGRATION

Traditional processes performed within a factory include design, process planning,

Numerical Control (NC) machine programming, robot programming, quality control,

testing, shop floor management, marketing, sales estimating, order processing,

scheduling, material requirements planning, plant maintenance, shipping, inventory

management, purchasing and accounting [Ref. 1]. These processes, in turn, have been

grouped to form manufacturing functions, such as Computer Aided Design (CAD),

Computer Aided Manufacturing (CAM), Computer Aided Process Planning (CAPP),

Computer Aided Test (CAT), Group Technology (GT), and Flexible Manufacturing

Systems (FMS). These functions are not always grouped consistently; for example, in

one case robot programming might be considered a process in CAM, while in another

case it may be included as part of CAPP. This ambiguity ("Which processes constitute

which manufacturing functions?") is a significant problem faced by systems designers

3eeking to integrate computers into the factory and is an area in need of standardization.

D. CURRENT APPROACHES TO INTEGRATION

There are three approaches which are currently applied to integrating manufacturing

functions. Each approach requires a data model or models to pass information between

tie processes and functions and each of these models are supported by one or more

modeling abstractions. A discussion of these approaches follows.

6

1. The High Level Approach

The high level approach to integration seeks to utilize as much of the existing

manufacturing machinery and automation equipment as possible, thereby holding down

the investment in dollars and minimizing time required for total integration. This

approach is commonly used to provide interfaces for the four main components of CIM,

as shown in Figure I [Ref. 11. The typical method of implementing the high level

approach is through a translator, a software system which takes output data from one

process and converts it into a form which can be used as an input to another process.

This approach has several drawbacks: when the data format used in one

process is modified, the translator must be rewritten, translation is costly in terms of

execution time and data which is passed from one process to another and then back again

requires two translations. In general, the high level approach does not solve the

integration problem but instead provides a "work-around." For these reasons, the high

level approach should be considered a short-term solution.

2. The Centralized Database Approach

The second approach to integration involves interfacing the four main

components of CIM through a centralized database, as shown in Figure 2. This

approach, while desirable from the standpoint of query processing and database

maintenance, is extremely difficult to implement. It requires a database management

system which can support the multitude of functions requiring data as well as assign

priorities to multiple requests for real-time access. The difficulty in implementing a

database management system which can provide these functions makes the centralized

database approach a long-term solution to integration.

7

!C~omputer DAided ______Computer:Aided

Applications 4Manufacturing

Figure 1. High Level Integration

8

Computer Aided Computer Aided

i Database

Applications Manufacturing

Figure 2. Centralized Database Approach

9

3. The Low Level Approach

The third approach to integration breaks the overall manufacturing process

down into manufacturing functions, such as those discussed in section C above. These in

turn, are served by individual databases. Interfaces would be provided between

databases and manufacturing functions, enabling one function to use data from another in

a network-like arrangement. Such an interface would require that all the function

databases use a common language and data model. Finding such a language and data

model, both of which must be powerful and flexible enough to support the variety of

abstra tion principles utilized in each of the manufacturing functions, is a major obstacle

to this approach [Ref. 1].

One advantage of this approach is that the use of a uniform model and

language would force standardization among CIM system manufacturers, bringing with it

several advantages such as ease of maintenance and upgrade and a yardstick to judge

competing systems. The low level approach also has the advantages of all distributed

database systems: they are reliable, available and fast. But with these advantages come

some disadvantages. Distributed databases are expensive to develop, prone to delay-

causing bugs and have inherent processing overhead [Ref. 5]. An additional advantage

of the low level approach is the more manageable data volume associated with any one

database. Consider the centralized approach, with its huge database; maintenance and

modification become a major undertaking. The low level approach, again, is considered

a long-term solution, requiring careful planning and integration.

4. Selection of an Awproach

Past research has demonstrated that, while each of the three approaches has the

potential for application, only the high and low level approaches exhibit the

characteristics considered necessary to truly integrate manufacturing functions. The

centralized database approach would require a computer capable of monitoring the entire

10

manufacturing process as well as maintaining the database, including both static data

(setpoints, alarms, unit conversions, etc.) and dynamic data (dimensions, locations.

current system values and states, etc.), controlling operator access, and a multitude of

other functions [Ref. 61. This extensive list of responsibilities would overwhelm all but

the most capable and expensive of those computers currently available. Other problems

exist with this approach. There is the possibility of a single-point failure causing a total

system shutdown, if the single-point happens to be the host computer. The solution to

this potential problem is the purchase, at some large sum, of a backup computer.

Additionally, the massive size of the database, in terms of data communications

requirements, storage, and manipulation, exceed the capabilities of today's database

management systems and would tax a modem mainframe computer. This is simply not a

viable approach.

The two remaining approaches, high and low level integration are both viable.

Both have been developed to some extent. However, the low level approach shows the

most promise for solving the problems facing the designer of truly integrated

manufacturing systems. In this approach, the data model serves a critical function.

E. THE DATA MODEL

As discussed above, the low level approach to integration uses distributed databases,

one for each manufacturing function, to support the CIM concept. These databases must

be linked by a common data model and a uniform language, each powerful enough to

support the different semantics inherent in the various manufacturing functions. The idea

of a powerful, flexible language is well understood and documented and we do not intend

to develop that concept in this thesis. The question of a data model remains - is there a

single model which could handle the diverse data needs of all the manufacturing

functions? We will examine current techniqnes in data modeling in support of CIM.

11

The data model is the group of general rules for the specification of the structure of

the data, along with the operations allowed on the data. In other words, a data model is

an abstraction, or group of abstractions, which allows us to see the forest (information

content of the data) rather than the trees (individual values of data) (Ref. 71. To better

understand the concept of data modeling, it is useful to define the objects to be modeled.

A working definition of an atomic piece of data might be the following tuple:

<object name, object property, property value, time>.

This is a reasonable way to view an idea; the tuple represents an object (object name) and

an aspect of the object (object property) which is instantiated by a specific value

(property value) at a particular time (time) [Ref. 81. Time is typically a very

cumbersome aspect of data modeling, not necessarily appropriate, and often difficult to

encode. As a result, time will not be considered in this thesis. The definition of an

elementary datum reduces to <object name, object property, property value>. Several

data modeling methods have been developed to represent and relate these three

remaining elemenes of the datum. One typical method is to put data into categories

according to properties [Ref. 91. In this method, the names of the categories, together

with their properties, is known as a schema. The schema can also include relationship

data between the categories and their properties. Figure 3 is an example of a schema

with three categories, US Government, Commanding Officer and USS Laolla. The

categories are represented by ovals, the properties by rectangles, and the relationships are

shown as lines connecting the categories they relate to.

The data structure used to represent the categories, combined with the set of

allowable operations on those data structures, defines a particular data model. The

number of possible combinations of structures and operations would indicate that a

12

S~ works for•

brachof1 pay r ank nI ameo
serie F ofiecmad

hul homeport operating

Figure 3. Example of Database Schema

significant number of data models could be specified; however, in reality only a limited

number of models have practical uses. Of these, three, the hierarchical, network, and

relational models, are widely used and accepted. These models, also known as classical

data models (Ref. 101, will be discussed in the following paragraphs.

1. Classical Data Models

a. Hierarchical

The hierarchical data model, the oldest of the traditional data models, is a

direct extension of the hierarchical database concept. The hierarchical data model

reprtn.sents objects and properties as nodes in a tree, with the relative order of trees and

subtrees important in defining the relationship between nodes. The arcs connecting the

nodes point away from the root and toward the leaves of the tree. Figure 4 shows an

13

intension of a hierarchical database for a submarine. The database is depicted in terms of

its nodes, or segment types, and the relationships between them.

In Figure 4. submarine, ship's attributes and crew's attributes represent

segments, with the segments further broken down into one or more data items or fields.

The relationships in a hierarchical data model are called parent-child relationships, and

can be one-to-one or one-to-many [Ref. 71. In Figure 4, the relationship between

submarine and crew's attributes is one-to-one, that is. the submarine has one set of

crew's attributes. This relationship is represented by a single arrow pointing at crew's

attributes. Conversely, several sets of ship's attributes could be applied to the node,

submarine, depending on the class. This one-to-many relationship is represented by

~SUBMARINE

SHIP'S ATTRIBUTES CREWS ATTRIBUTES

combat o ropuosion supply number numoer
svstem | olant Iloadout I officers enlisted

Figure 4. Intension of a Hierarchical Database

14

double arrows pointing at ship's attributes. In this example, submarine is the parent of

both ship's attributes and crew's attributes: ship's attributes and crew's attributes

are siblings

Figure 5 depicts a record, an extension of the structure shown in Figure 4.

An extension of a segment is a group of data items relating to one particular

entity [Ref. 6!.

The hierarchical data model, while appealing because of its simplicity, has

two inherent constraints: all relationships must be binary, either one-to-one or one-to-

many, and all relationships must be capable of representation in a tree-like

depiction [Ref. 71. The constraint that all relationships be binary means that this model

can only represent one-to-one and one-to-many relationships. It is not possible to

SSN 682 Tunny IPearl Harbor

MKl17, S5W 90 days iRechel 15 113

Figure 5. Extension of a Hierarchical Database

15

represent many-to-many relationships directly; instead, one of two artificialities must be

introduced. Figure 6 shows one method, known as duplication, In this method,

duplication of job number records are used to ildicate that many ships are repaired by

many shipyards.

The second technique requires the introduction of second tree. as shown in

Figure 7. Here again, ship has a many-to-many relationship with shipyard. Both of

these methods, by retaining superfluous records, the potential for data duplication.

The second inherent constraint of hierarchical models is the requirement

that all data relationships be represented by a tree structure. As long as the data are

naturally hierarclhical, this constraint does not present a problem. However, many-to-

many and multiple parent (many-to-one) relationships require modification to the graph

shio toertn I customer snoo bulicing shipyard

jot numlr job number I ob numroer job number

i{suooo ildingl shipyard I"sh'° o er" customer

Figure 6. Many-to-Many Relationship Represented by Duplication

16

_ _ II ~A, • •I I . .. _ -

Figure 7. Many-to-Many Relationship Represented by Artifici•Il Segment

structure. As a result, these types of relationships are not capable of being represented by

hierarchical data models. and are not capable of being represented by hierarchical data

models.

b. Network

Network data models are based on tables and graphs. The most prominent

network data model to date is the model developed by the Data Base Task Group of the

Conference on Data Base Systems Languages, known as the CODASYL

model [Ref. 11]. In this model, the nodes of the graph represent record types which

correspond to groups of related fields. The lines between nodes correspond to set types

which represent the connections between tables. Each con.,ection, or set, has a

designated owner record type 2nd may contain zero or more member record types.

Figure 8 shows an example of a network data model.

17

SHIP PARTS RECORDS

ship name Ihull number NSN Ipart name locker number

SHIP - PR PARTS CORDS - SPR

SPR

quantity

Figure 8. Example of a Network Database

In this example, there are three record types: ship, parts records and

SPR. The sets ship-SPR and parts records-SPR respectively, relate ship and parts

records to SPR. Each occurrence of ship-SPR consists of one record from ship (the

owner) and one record from SPR (the members). In a similar fashion, an occurrence of

parts records-SPR would consist of a single record from parts records (the owner) and

one record from SPR (the members).

One constraint of the network data model is that, as in the hierarchical

model, all relationships must be functional, one-to-one or one-to-many. Additionally,

network data models cannot be used to represent recursive relationships, ie.. the situation

where both owner and member record types are the same [Ref. 7].

18

c. Relational

The relational data model is significantly different from the hierarchical

and network data models, both in its basis and its approach. The model is based in

relational mathematics, a field centered around the concept that a relation can be defined

which expresses the correspondence between two sets. Its approach is more abstract than

the hierarchical or network models and, therefore, more natural in its representation of

data. With the hierarchical and network models, data is forced into an artificial construct,

either a hierarchy or a set. In most cases, these models tend to complicate the user's

view of the data. The relational data model's strongest point is that it simplifies, rather

than complicates the representation of data. [Ref. 61

Without delving deeply into the mathematics of the relational model, we

will provide a brief overview of the concept involved. The model is based on the notion

of a relation, or expression relating two or more sets. A relation can be thought of as the

Cartesian product of the domains of the sets involved. In even simpler terms, a relation

is the tuple which results when you take the Cartesian product of the domains of those

sets.

Typically, relations are represented to the user as a two-dimensional table

where the column headings represent attributes and tile rows represent the tuples. Figure

9 depicts a relation called SUBMARINE. This relation has four attributes, hull

number, name, Commanding Officer and homeport. The domain of the attributes are

character strings of length 3, 15, 15 and 15, respectively.

Tuples are identified by the values of their attributes. For example, 682,

TUNNY, Kaup, Pearl uniquely identifies the first tuple in Figure 9. Often, however, it

is not necessary to use all the attributes of a tuple to uniquely identify it. The attribute

San Diego does not uniquely identify a tuple (three tuples contain that attribute) but the

19

U

SUBMARINE

number Officer

682 TUNNY Kaup Pearl

701 LaJOLLA MacNeill San Diego

707 PORTSMOUTH Ihrig San Diego

713 HOUSTON Rogers San Diego

Figure 9. Example of Relation

pair of attributes, 707 and San Diego does uniquely identify a tuple. A combination of

attributes which uniquely identifies a tuple is called a candidate key. If a candidate key is

chosen to be used as the tuple identifier, it is referred to as the primary key [Ref. 5].

Relational models exhibit data independence, a measure of a database

system's ability to allow for change in the database without necessitating change in the

database programs or application programs. The model achieves this by representing

data as relations and then manipulating the relationship between relations through

relational calculus or relational algebra [Ref. 51. Additionally, the relational model

represents data logically rather than requiring it to fit into an unnatural construct as

hierarchical and network models do.

d. Shortcomings of Classical Data Models

The classical data models have some significant shortcomings, as documented

in [Ref. 121. Two of these shortcomings are particularly applicable to the CIM

20

environment [Ref. 61, These two limitations are a lack of support for abstract data types

and limited semantic expressiveness. The more serious of these is the problem of limited

semantic expressiveness [Ref. 6]. Simple data structures in the classical models often

cause loss of information and minimal support for modeling of application environment

semantics [Ref. 131. These models cannot distinguish between the different types of

relationships between objects, in fact, the same data structures used to model attributes of

an object are used to model the type of the object and the relationships between objects.

The result is loss of data [Ref. 6].

The second problem, the lack of support for abstract data types, causes

complex objects from the application environment to be tepresented by record data

structures. This unnatural representation requires users to address and manipulate objects

from the application environment differently than they would be addressed and

manipulated in the data modeling environment. This directly counteracts the primary

purpose of data modeling. [Ref. 61

2. Higher-level Data Models

a. Introduction

Considerable effort is currently being directed at higher-level data models

which provide greater flexibility and expressiveness than the three traditional models.

These models, also known as semantic data models, seek to achieve increased database

accessibility by end users. To achieve this objective, the semantic models embed the

semantics appropriate to the application [Ref. 6].

Semantic data models employ abstraction concepts, or ideas, to organize

the information they represent and hide detail thereby reduce complexity. The following

section discusses the most common abstraction concepts used in semantic data models.

21

b. Abstraction Concepts

(1) Generalization/Specialization. Generali:ation views a set of tokens

or a set of types as one generic object [Ref. 71. By generalizing, we can overlook many

of the individual differences between objects, emphasizing instead their similarities.

Figure 10 depicts a generalization hierarchy for a submarine crew. The arrows indicate

the direction of generalization. In this example, crew member is a generalization of

officer and enlisted. One advantage of generalization is that the idea of inheritance

offce enlisted

trained trained

Operations Weapons Admin
Deoartmt Deaartment Department]

Sonar Torpeoo Fire Control
Division Division Division

Figure 10. Generalization and Specialization

22

WrU

applies, that is, the properties of the generalized type are also properties of those entities

further down in the hierarchy. For example, in Figure 10, all of the properties of crew

member are inherited by enlisted (assigned to a submarine, submarine-trained, etc.),

properties which are inherited further down by various classifications of enlisted.

Inheritance of certain properties can be disallowed while some properties can be

specified as applicable to only one type.

Specialization is the opposite of generalization [Ref. 71. In Figure

10, nuclear trained is a specialization of enlisted. In specialization, inheritance does

not always apply. In our example, all Weapons Department personnel are non-nuclear

trained but it is not true that all non-nuclear trained personnel are in the Weapons

Department.

(2) Aggregation. Aggregation is the abstraction concept in which an

object is represented by its constituent parts and the relationships between those

parts [Ref. 14]. This concept is useful because it makes visible both the structure of an

object and the individual components of the object and how they relate to the structure of

the object and to each other [Ref. 7]. Built into this abstraction concept is the ability to

hide from the user those details of implementation which he does not need to know.

Aggregated properties which are definitional in nature are called intensional

properties [Ref. 15]. The values that these intensional properties can take on are referred

to as extensional properties [Ref. 15]. Extensional properties are factual. Figure 11

depicts an aggregation hierarchy. Primitive objects, objects which can not be further

subdivided, are displayed in lower case. Aggregated objects are shown in upper case. In

this example, name, hull number and homeport are primitive objects while SYSTEMS

and CREW are aggregated objects. Name, hull number, homeport, SYSTEMS and

CREW are intensional properties. "LaJolla", "701", "San Diego" "propulsion",

"combat", "navigation" and "Bill Smith" are extensional properties. These extensional

23

SHIP

Fnamne uil numb. hoepor SYSTEMS CREW

propulsion ,cobat navigation

Figure 11. Aggregation

properties represent the actual values for the intentional properties depicted in Figure 11

above.

(3) Association. The association abstraction relates similar objects as

a higher level set object [Ref. 161. In this abstraction, the attributes of the set object are

emphasized while details of the set members are ignored. Figure 12 gives an example of

the association abstraction: here the set object SHIP is composed of an association of

crew members, each of whom has a name, rank/rate and division.

(4) Version Generalization. Version generalization is an abstraction

concept in which an object version is related to a higher level object, known as an object

24

SHIP i

- association

crew
member

Figure 12. Association

rpe. Object versions are defined as objects which share the same interface but have

different implementations [Ref. 171. An object type is an abstraction of the common

properties of its versions [Ref. 6]. Figure 13 helps to explain these definitions.

Submarine and surface ship are object types which are related, as shown, to object

versions 637 class, 688 class, destroyer. aircraft carrier and cruiser. In this example,

there is no such thing as a minesweeper.

In this abstraction, versions can have two types of attributes; those

which are held in common with the set object and those which are unique for that

25

(umrn surface shi~p

cls 68destroyer aircraft cruiser

S, carrier

Figure 13. Version Generalization

version. All submarines, including 637 class and 688 class have the attribute "nuclear";

however, not all submarines have the attribute "under-ice capable", as all 637 class do.

Attributes common to both the object type and the version type define the interface

characteristics of the object type. Attributes unique to one version distinguish one

version from another.

In version generalization, inheritance of attributes is possible, similar

to the generalization abstraction. The two abstractions differ, however, in that version

generalization specifies the relationship between an object type and its version types,

while in generalization, the abstraction is used to specify the relationship between its

types and subtypes [Ref. 61.

(5) Instantiation. Instanthation produces copies of an object, both

object versions and object types [Ref. 171. Both object versions and object types can be

26

instantiated. Instantiating a version provides a local working copy of a previous design.

with both the implementation and the interface copied. The working copy can be

specified to any level of detail (Ref. '5]. Types can be instantiated to produce a working

copy where no previous design existed. In this case, no implementation is specified. only

the interface is copied. Figure 14 shows an example of instantiation. In this example,

the object CDR Reichel's ship is an instance of type SHIP. CDR Reichel's ship could

now be used to produce a working copy of type SHIP which could then be used as a

starting point for a new design. Since CDR Reichel's ship is an instantiation of a type,

no inmplementation details have been provided and this particular instance will be

developed from scratch. In the case where CDR Reichel's ship is instantiated from the

version San Diego -based ship, of type SKIP, implementation details have been provided

hull number
homnsorl

shsptype SHIP

________oompemeneSHIh'ull number hull numlber
version Instanceno.or San Diego SonDiel. hompor7Snie-based CCOR Relchel's

class JSSN 46137 ý' tclass
SSN 637 class ship of typeCO 'CO Reichel
submarine SHIP

commlernin omptlement

Figure 14. Instantiation

27

as well as interface details. Here the design of CDR Reichel's ship would begin where

the implementation details of San Diego -based ship left off. This implies that CDR

Reichel's ship and San DI.go -based ship have similar implementations.

Instantiation provides for attribute inheritance. An instance of an

object version will inherit the attributes of both the object type and the object version.

For example, if we depicted an instance of object version San Diego -based ship and

called it CDR Wynne's, this new instance would inherit all the attributes of both San

Diego -based ship and SHIP.

(6) Version Hierarchy. Version hierarchy is defined as the hierarchy

formed from the set of versions for a particular type or subtype [Ref. 181. As we proceed

from one level to the next lower level in this hierarchy, additional implementation details

would be provided. The difference between ordinary generalization and version

generalization is that different versions of an object will have the same set of properties

with potentially differing values, whereas different types will have different sets of

properties [Ref. 61. Figure 15 shows a representation of a submarine as a version

hierarchy. Here, NUCLEAR is a subtype of type SUBMARINE and "East Coast" and

"West Coast" are subtypes of NUCLEAR. Each subtype may have its own version

hierarchy; in the example, "New London-based" and "Charleston-based" are two

mutually exclusive versions of subtype "East Coast." Each block in the example is

capable of acting as the initial point for a new design.

(7) Instance Hierarchy. Instance hierarchy is a hierarchy of different

instantiations of the same types/sutypes or versions [Ref. 181. Figure 16 depicts an

instance hierarchy for the construction of an submarine. The submarine is being built

from scratch; that is, no previous drawings are to be used. The starting point for the

design is an instantiation of the subtype NUCLEAR. As the design progresses, the

designer may not be sure whether he wants a state of the art combat system or he wants

28

[mr-L§7I rijg*~

~-bryp

MLwk a COW. U. Ww O C."

wtw..on

0mass "as Clo....pr

Figure 15. Version Hierarchy

29

class
'hull numoer subtype
nomeport NUCLEAR

Commanding Officer submarine

comoat system

class
hull umberinstance

class instance class instance
hull number SSN 701 SSN 701 hull number SSN 707 SSN 707

homeporl an Diego of San Diego homeport an Diego of San Diego
Commanding Officer nuclear Commanding Officer nuclear

comboat system submarine combat system subi.vrine

Figure 16. Instance Hierarchy

to use a proven model. The design process can continue on the path he prefers now and,

since the instance hierarchy is saved, if he later changes his mind, the hierarchy allows

him to go back to the original design and make the necessary modifications.

c. Current Semantic Models

The abstraction concepts we have described in the previous section are

combined and redefined in several ways to develop semantic data models. These models

use primitives such as objects, entities, and events along with methods for combining

these primitives and specifying attributes. Some models, known as extended data

30

A

models, integrate programming language constructs into database concepts. They also

use advanced concepts such as abstract data types and strong typing [Ref. 61. Some of

,he more prominent semantic data models in use include the Entity-Relationship (ER)

Model, the Functional Model, SAM*, RM/T, SHM+, SDM/Event Model, and TAXIS.

Of these, the latter three are extended data models. We will examine the attributes of

these models in the following paragraphs.

(1) Entity-Relationship (E-R) Model. The Entity-Relationship (E-R)

Model is based on tables and graphs, an outgrowth of the process of designing

databases [Ref. 71. This model bears some resemblence to the hierarchical and network

data models, in fact, the E-R model uses a network representation to depict entities as

nodes and relationshiis• as edges connecting appfoprthte nodes. In this model, four levels

of views are designated which support both logical and physical database design. These

four levels define conceptual objects and their relationships, as well as schema for

organizing and storing these relationships. One strongpoint of this model is that it

supports many-to-many relationships. To date, its primary use has been in systems

analysis and design of databases [Ref. 7].

(2) Functional Model. Functional database models seek to represent

entities and the relationshlips between them in terms of the mathematicel notion of a

function, as a mapping of one object onto the domain of another object. This model

treats data definition and data manipulation as integrated. There is no concept of a record

or tuple in this model. Instead, the model treats the data together with the operations on

the data, similar to an abstract data type.

Functional database models use concepts which are intuitively easy

to grasp. These concepts have evolved from mathematics and programming languages

and give functional models their power.

31

(3) SAM*. SAM* is an improved version of an earlier data model,

known as SAM [Ref. 191. SAM* is a powerful model, capable of supporting temporal,

positional and procedural relationships, as well as hierarchies of objects, multiple

versions of objects, recursive definitions of objects and complex data types. The model

makes use of two types of concepts, atomic and non-atomic. Atomic concepts are those

which cannot be further broken down, are well-defined and understood, and do not need

to be defined in temis of other concepts. Conversely, non-atomic concepts are defined in

terms of either atomic concepts or other non-atomic concepts. [Ref. 61

Groupings of atomic and non-atomic concepts are called associations

and are used to describe higher-level non-atomic concepts. SAM* supports membership,

aggregation and generalization associations, analogous to the classification, aggregation

and generalization abstraction concepts [Ref. 6].

(4) RM/T. RM/r, or extended relational model, is an improvement on

the relational data model, providing for null values, support for the aggregation and

generalization concepts, and a more diverse group of objects [Ref. 20). This model

represents types as relations with a special internal identifier to depict each instance of

the type. Attributes are similarly represented, with the special internal identifier

containing property values.

(5) Extended Semantic Hierarchy Model. The extended semantic

hierarchy model, or SHI+, provides a storage model which attempts to integrate the

fundamental concepts of (semantic) data models with the concepts currently polular in

the design of programming languages [Ref. 10]. This model is based on an object

oriented, rather than a record oriented approach such as that used in the relational data

model. SHM+ uses the modelling concepts of classification, aggregation, generalization,

and association. It is referred to as an extension of the relational model because it

provides additional domains and data types, permitting modelling of complex models.

32

Additionally, SHM+ has the capability to define type hierarchies and provide for

inheritance. The hierarchies are composed of instances of subtypes of the parent type.

These hierarchies may, in turn, be hierarchies themselves [Ref. 61.

(6) TAXIS. The TAXIS data model is the culmination of an effort to

integrate tools for the design of information syv!'ems [Ref. 211. The model is object-

oriented, employing objects to represent real-world (application) entity. and incorporates

the aggregation, classification and generalization abstraction concepts [Ref. 61. Complex

entities can be modeled in TAXIS using a grouping known as a transaction.

Transactions can be arranged hierarchically to model higher level procedures. TAXIS

has a compiling feature, as well, which allows the model to operate much like a

traditional relational database management system.

(7) Object-Oriented Models. Object-oriented models are distinguished

from classical approaches by their ability to handle data of an arbitrary type. Whereas

classical approaches handle only data formatted as a record, the object-oriented systems

define types similarly to abstract data types in which data and the operations on that data

are packaged together. The object-oriented models are based on the classification

abstraction concept where objects are grouped into classes based on certain properties.

The classes can then be organized into hierarchies which determine inheritance

characteristics. [Ref. 6]

33

IMl. THE MANUFACTURING DATA MODEL

A. INTRODUCTION

As discussed in Chapter 2, there are three approaches to Computer Integrated

Manufacturing (CIM): the high level approach which utilizes expert systems and data

translators to support the manufacturing functions, the centralized database approach

which uses a central or distributed database to serve the data needs of the manufacturing

functions, and the low level approach, which passes data between the manufacturing

functions through the use of a data model that fits the needs of each of the manufacturing

functions. We listed the advantages and disadvantages of each approach and indicated a

preference for the low level approach, in spite of the cost and need for long term

planning associated with this method. In this chapter, we will review a model which

exhibits many desirable characteristics in supporting CIM, and potentially Flexible

Manufacturing Systems (FMS).

C. Thomas Wu and Dana E. Madison of the Computer Science Department at the

Naval Postgraduate School have developed a data model in support of their work in

databases and Computer Integrated Manufacturing. Since we are describing their model

in this chapter, in preparation for applying it to FMS in Chapter 5, this chapter is

paraphrased directly from [Refs. 1,2,61. We introduce no original material in this

chapter.

B. DATA MODEL DESCRIPTION

Wu and Madison's data model, hereaZ..r called the Manufacturing Data Model,

takes a unique approach to modeling the data needs of CIM. Rather than describing the

data needs of each process within CIM, i.e., the data needs of Design, the data needs of

34

Planning, etc., they look at the data needs of the overall manufacturing system. They

refer to their approach as data-oriented rather than process-oriented and cite its advantage

of integrating all the manufacturing functions within a system, rather than merely

automating the interfaces between functions [Ref. 61. We will begin our review of the

Manufacturing Data Model by discussing the abstraction concepts it supports.

The Manufacr.,..ng Data Model includes the molecular aggregation, generalization,

version hierarchy, instantiation and instance hierarchy abstraction concepts [Ref. 1]. The

top level conceptual schema is used to depict several of the modeling concepts used in

the Manufacturing Data Model. Figure 17 shows a conceptual schema for a SHIP and

portrays allowable type/subtype aggregations, component relationships, and acceptable

combinations of primitive objects which can be manipulated to produce higher-level

objects. The conceptual schema defines the primitive objects under consideration.

Primitive objects are the low level entities which are manipulated by the data model to

support an application such as design, planning, or manufacturing. Primitives can, in

fact, be composites of other primitives and can be defined to various levels of

abstraction [Ref. 61.

In the Manufacturing Data Model, each type and subtype depicted in the conceptual

schema have an associated prototype, and within each prototype exist slots. These slots

contain specific attribute values, or default values, and hold inheritance data. If an

instance is desired, an extension of the prototype is created with unique attribute values

inserted into the slots.

By assigning specific attribute values to the schema in Figure 17, we could create an

instance of a ship, i.e., a specific class or hull number, depending on how detailed the

schema was and how specific the attribute values are.

35

w
I I 1
hulf pousion combat muesrcu

r 7m syte sys

i r~oop,°, 1. ;J 1 1
f ai nginE l* F-DIp er aecknouse rantenna

1controi syste m, I

F-ooter disoay

-ante-nna--

Figure 17. Conceptual Schema of Type SHIP

Our generic SHIP is an aggregation of a hull form, a propulsion system, a

superstructure and a combat system. Propulsion system. superstructure and combat

system are also aggregations of objects, in some cases, sharing objects. Both

superstructure and combat system share an object called antenna.

Following the notation introduced by Madison [Ref. 61, bold rectangles in the

conceptual schema depict types with named subtypes. For example, propulsion system

can have subtypes such as nuclear, gas turbine or conventional steam. These subtypes

are capable of being instantiated to produce a unique ship.

The conceptual schema represents an important segment of the data modeling

process. While not part of the data model, it is a medium through which the model may

36

capture data for an application. The model, in concert with the conceptual schema,

represent the range of alternatives available in modeling a particular application. [Ref. 6]

1. Molecular AggreZation

Wu and Madison use the aggregation abstraction described in Chapter 2 to

support several manufacturing functions, including product design, where it can be used

to model assemblies and subassemblies, and planning, where it can be used to develop

process plans.

The Manufacturing Data Model uses aggregation to combine intensions and

extensions of objects of potentially dissimilar types into a higher level object, which will

turn out to be an intension or extension of a type (Ref. 61. Figure 18 shows an example

of an aggregation of intensions using the Manufacturing Data Model.

2. Generalization

Wu and Madison use the generalization abstraction concept to indicate the

relationship between types and subtypes. They treat types as generalizations of named

subtypes, which are then treated as primitives which are capable of being made into

versions or instances. Figure 19 shows a type propulsion plant, created from subtypes

nuclear, gas turbine or conventional steam. In their model, the idea of subtype is

important because they allow different subtypes to have different sets of attributes.

(Ref. 61 In Figure 19, nuclear has an attribute "main coolant pump", while neither gas

turbine nor conventional steam do.

An important aspect of generalization as applied in the Wu-Madison model is

the inheritance of attributes between types and subtypes. In Figure 19, propulsion plant

has been created with attributes A/C plant and distilling plant. Each subtype, nuclear,

gas turbine, and conventional steam have these same attributes, plus additional

attributes which may be uniquely defined for that subtype. The subtypes nuclear, gas

37

COMBAT SYSTEM

Fire Control Raa Sonar•°' [°°'"

Figure 18. Example of Aggregation

38

propulsion plant

AC Plant
Distilfing Plant

nuclear gas turbine conventional steam

AC Plant AC Plant A/C Plant

Distiling Plant Distilling Plant DiStilling Plant

Main Coolant Pumps Fuel Pumps Detservng Feed Tank

Steam Generators Fuel Tanks Economizer

Control Rods Superlteater

Main Engines Boiler

Snatt Seals Fire Pumps

Condensers Fuel Tanks

Figure 19. Example of Generalization

turbine and conventional steam have their own attributes which define them as unique,

as well as any attributes which they inherit from their generalized type. [Ref. 61

3. Version Hierarchy

Wu and Madison define a version of a type as a molecular object with two

objects, an interface and an implementation. The interface for a version is specified by

listing properties and attributes which describe the version. In their model, the

implementation for a version is specified by providing values for the attributes listed for

the interface. The Manufacturing Data Model has all of its interface attributes specified

but may have its implementation details in some stage of completion. By defining their

model in this manner, a version may be plugged, unplugged or partially

plugged [Ref. 171. In Figure 20 we show an object of type SHIP with its interface

39

defined, as represented by the upper block in the figure with attributes speed. length.

beam, range and Commanding Officer displayed. The implementation details for this

object are not specified, as depicted by the missing values for the attributes listed. Object

SSN-XX has the same interface details as its object type. SHIP, as wenl as some

implementation details, indicated by the values filled in for the speed, length and beam

attributes. In this example, the interface (function) of the SHIP is specified, while the

implementation details (e.g. what is the speed of the ship?) are not fully specified.

[Ref. 61

Versions may have two types of attributes. One type of attribute is that which

is inherited from the object type, while the other type are those which have unique values

speed
length

beam type
range SHIP

Commanding
Officer

speed 30 kts
length 317 ft version
beam 35 ft SSN-XX
range o f
Commanding type

Officer SHIP

Figure 20. Example of a Version of a Type

40

MEO

for each version. Those attributes inherited from the object type designate the interface

characteristics, or function, of the version. The attributes which are version specific are

those which differentiate one version of a particular type from another version of the

same type. [Ref. 61

An important note is the difference between a version and an instance of a type

or subtype. A version is created at some midway point in the modeling of an application,

allowing further work to begin at that point. Implementation details are partially

specified. On the other hand, a type or subtype indicates a starting point in modeling an

application, with no implementation details provided. [Ref. 6]

The version hierarchy is formed when various values are assigned to the

attributes, resulting in a set of possible starting points for future work. This important

difference between the Manufacturing Data Model and other data models minimizes the

amount of redundant work necessary in all manufacturing functions. Rather than starting

each design, or process plan or schedule from scratch, the Manufacturing Data Model

concept of version hierarchy allows the designer or engineer to pick up work at some

midpoint previously defined.

The definition of version is what gives the Wu-Madison data model this unique

capability to pick up an earlier design or plan and continue developient from that point.

While the original definition of version [Ref. 171 allowed versions to be objects with the

same interface but different implementations, Wu and Madison have defined version in a

more general manner. In their definition, implementation can be specified to any desired

level of detail. For instance, implementation may be plugged, or completely specified;

partially plugged, or partially specified; or unplugged, the case where no implementation

details are specified. They feel that by generalizing the definition they gain considerable

flexibility, allowing them to better model the manufacturing environment. [Ref. 61

41

The Manufacturing Data Model version hierarchy is also unique in that it is

formed from the specialization of versions to form lower level versions. The existing

concept of version hierarchy [Ref. 171 is ey ictly the opposite; the hierarchy forms from

the aggregation of versions to create higher level versions. These two concepts are

depicted in Figure 21.

The Manufacturing Data Model has one additional characteristic which gives it

the capacity to model a particular application environment. Their model consists of

versions which are all of the same type, related as depicted in the version hierarchy.

Versions are related to their type by version generalization where the the highest version

in the hierarchy is directly related to its type and the lower versions are related indirectly.

They feel this provides their model with additional flexibility in relating and representing

versions. [Ref. 6]

4. Instantiation

The Manufact'wing Data Model makes use of the instantiation abstraction

concept to create versions and instances of objects. By instantiating types and versions,

it is possible to produce either an instance of an object or a new version.

As with the generalization abstraction concept, instantiation provides a similar

means of inheritance. Instantiation inheritance duplicates all of the attributes and

attribute values of the object being instantiated. New attributes may not be identified but

attribute values may be further specified. Figure 22 shows this inheritance. In this

example, the attributes of SSN 637 class, SSN 666 and SSN 667 are the same as the

attributes of type SUBMARINE. The differences between these instantiated objects,

either versions or instances, are differences in attribute values. SSN 637 class will have

only a few attribute values specified, whereas SSN 666 anI SSN 667 will have all their

attributes specified, many with different values. Wu and Madison point out that

42

version submarine
of type

€llss

lrsls$
version 637 version 66S
f o of
subtye s subtype

stretch 637 regular 637

cllss
class

version submarine[----• 0of type
ship

version 65S version 682
of of
type type

submarine submarine

Figure 21. Comparison of Version Hierarchies

43

type
SUBMARINE

~II

version V
637 class

version V1 instance I1 instance 12
stretch 637 class F SSN 666 SSN 667

Figure 22. Example of Instantiation Inheritance

instances, such as SSN 666 and SSN 667, represent real world objects while versions,

such as stretch 637 class serve as templates which define real world objects to a

particular level of detail. In Figure 22, we could add an instance 13 below version VI to

represent an real world instantiation of this template. [Ref. 6]

5. Instance Hierarchy

Wu and Madison introduce a new abstraction concept in their Manufacturing

Data Model, the instance hierarchy, to complement the other concepts which they

employ. The instance hierarchy allows the user to archive previous instances of a

particular object. They stress that the instance hierarchy is a temporary entity within the

system, pending a decision by the user as to which particular instance (design, process

plan, schedule, etc.) he wishes to implement. In Figure 23 we have modified an example

44

from [Ref. 61 to depict the operation of the model as an engineer designs a submarine.

As shown. once the engineer chooses the alternative in the hierarchy to become the final

ship design, the hierarchy is collapsed, leaving only the selected design. In our example.

he has chosen a stretch 637 class submarine as the design he intends to work with. He

could also have chosen create a new design from the selected version. In Figure 23, we

have shown a situation where the engineer has decided to create a new version of the

stretch 637 class, the special DSRV-configured stretch 637 class. This design is added

to the version hierarchy to be used as a starting point for future work. In this case,

attribute values must be considered for specification when the version is created.

C. FORMAL MODEL DEFINITION

Wu and Madison use formal mathematical notation in [Ref. (] to define their data

model. We point this fact out to the reader in the event further background in the model

is desired. We will not review the mathematical definition here as it is not pertinent to

this thesis.

45

S. i I I IM i|

yp:,6u0IVDo fleramrc,y!~K 1 *'amifled or tTmst
&pproonats ool5Ct-

surfacerin

63? class .tyo5stUbtyps to

0=411'a to show
avaiilibei versions

*svorooirato version is

-ogular strteftc
63? class 6 37 class

',n.,.r,, of trhe version

SSN "10 wor cT measd ir

stamlornvsis are
adWe O 10 insance

*when Work is corrniisto.

so fnal Choice to

versiont hierarch~y

Figure 23. Operation of dhe Manufacturing D2ata Model

46

IV. THE FLEXIBLE MANUFACTURING SYSTEM

A. INTRODUCTION

The Flexible Manufacturing System (FMS), as a manufacturing function within

Computer Integrated Manufacturing (CIM), is a set of computer controlled workstations

and the transportation components which link them, designed to efficiently produce

products at low or medium volumes [Ref. 6]. As a production method, the FMS provides

the computer integrated factory opportunities to:

* increase production,

* decrease costs,

* manufacture parts in random order, rather than based on material available,

* decrease inventory and work-in-progress levels,

* provide for inspection of all work,

* decrease the need for repetitive or dangerous work by humans,

* increase the need for intelligent work by humans,

* provide a reprogrammable, and in some cases, unmanned, manufacturing facility for
a wide range of items [Ref. 221.

With these positive points, one might assume that FMS technology is the solution to

the problems of CIM, in particular, the lack of integration between manufacturing

functions. In fact, this is not necessarily true, and in most cases, FMS is still pursuing the

goals of CIM. In this chapter, we will review FMS system architecture as it exists today,

pointing out a need for integration which closely parallels the needs of CIM presented in

Chapter 2.

47

B. FMS HISTORY

FMS evolved from the Numerical Control (NC) machines of the 1950's and 60's.

These machines were the first programmable computer-controlled "robots" in the factory.

They operated on a simple scheme involving some type of communication system, often

a punchcard, providing input in the form of coded numbers to the machine. The numbers

represent the various functions which the machine is capable of performing. For

example, the sequence "5 4 6 2" might represent pick up tool "5", move left "4" inches,

cut to a depth of ".06" inches, then perform the sequence again.

The next step in the development of FMS was the emergence of the Direct

Numerical Control (DNC) machine in the mid 1960's. The DNC machines coupled more

powerful computer control systems with tool handling and material handling systems.

The first direct ancestor of today's FMS came in 1975 when a Numerical Control

machine was mated with an Automatic Tool Changer (ATC) system, a pallet pool, and an

Automatic Pallet Changing (APC) system [Ref. 22]. From this point on, the technology

evolved rapidly. Today, FMS is not only used in machining, but in welding, cleaning,

painting, inspection and packaging. The technology is even spreading beyond the

spectrum of manufacturing into non-traditional CIM environments. The Japanese

envision an automated textile factory, integrating garment design and manufacture

around an FMS [Ref. 221. In this facility, design data would be used directly by cutting

¶ and sewing machines to produce garments with a minimum of human intervention.

The importance of modem manufacturing concepts such as FMS becomes apparent

when one considers industry and population trends. Manufacturers will replace their

current manufacturing methods and machines by the year 2000, not piecemeal, but in

:oral. Today's young people prefer working in service industries, rather than

manufacturing, reducing manufacturing's employee base. These facts indicate that

48

productivity and efficiency will become even more important in the future of

manufacturing. FMS, with its impressive list of assets cited above, will be in the

forefront of this manufacturing revolution. [Ref. 22]

C. FMS SYSTEM ARCHITECTURE

Most FMS have a common architecture, built around a set of basic rules.

1. Ranky's Rules

These architecture rules, identified in [Ref. 221 give top-level guidance in designing a

productive and efficient FMS. The rules make use of the concept of a "cell", the

smallest, single-function component of the FMS.

a. Cells

The FMS should incorporate automated and programmable machines, or

cells, capable of operating unmanned, utilizing ATCs and self-diagnostics while coupled

to a central computer which provides machine programming and data. These cells can

range in function from machining to inspection to packaging.

b. Transportation System

The cells should be connected by a system which provides material or

parts access in a random (Automated Guided Vehicle) rather than serial (conveyer belt)

manner.

c. Storage Facility

The system should incorporate a parts, tools and pallet storage facility.

d. Computer Control

A distributed processing system should be implemented to provide

computer control of databases as well as links to external entities such as Computer

Aided Design (CAD), Computer Aided Manufacturing (CAM) and all related business

functions.

49

e. Reliability and Flexibility

The system should be designed so that, in the event a particular cell breaks

down, sufficient redundancy and flexibility is present to allow for continued operation.

2. System Configuration

Using these basic rules, it is possible to produce a typical list of cells which

might comprise a FMS.

a. Control System

The control system includes facilities for operator interface and FMS

control and programming. This system could include features such as editing, a CRT

display, diagnostics and system control software.

b. Functional Cell

The FMS contains one or more functional cells, components which

determine the purpose and capabilities of the system. Typical functional cells include

machining cells, inspection cells, part washing cells and painting cells.

c. Transportation System

The functional cells would be linked by some type of automatic work

changing system, capable of interchanging palletized workpieces. The system would

also present the palletized workpieces to an AGV system, the link from the FMS to the

outside world.

d. Automatic Tool Changing Cell

This cell interacts with the functional cells, replacing tools as necessary.

Typical tools which are changeable include chisels, blades, chucks and bits.

e. Storage Facility

The FMS requires a warehouse to store extra pallets, tools and material

stock. In general, this warehouse is an automated activity, interacting with AGVs.

50

f. An Example of FMS

Figure 24 depicts a generic FMS, comprised of a machining cell, part

washing cell, controller and transportation system. Not shown is the external storage

facility. We will use this simple FMS in Chapter 5 when we discuss applying the

Manufacturing Data Model.

FLEXIBLE MANUFACTURING SYSTEM

Machining Cell P art sWahing Cell

[con i--Iler co Ic ntroller system controller

Smilng machine [wasing -robot J trans ort systemi

I tool magazine Lstorage facility

7part holder

Figure 24. Simple Flexible Manufacturing System

51

D. SCHEDULING A FMS

Scheduling a FMS is usually approached from a mathematical, or statistical, basis.

It should be emphasized here that very effective methods exist to schedule and program

the cells of a FMS, however, all current methods treat the FMS as a separate

manufacturing function. Integration of the FMS with design, business functions and

otiher manufacturing functions is not considered. Since it is our intention to provide a

means to integrate these functions with FMS, we will provide just an overview of the

most popular current technique.

Several traditional methods are used to schedule conventional manufacturing shops

and several are applied with varying degrees of success to FMS. Of these, the "n" job,

"nm" machine method extended for FMS is probably the most widely used [Ref. 221. This

method is based on combinatorial mathematics and uses several rules and guidelines to

aid the scheduler in writing an efficient machine program. The method is presented in

significant detail in, [Ref. 221 therefore, its intricacies and nuances will not be presented

here. Instead, since it is the most common method of programming FMS, we will state

its shortfalls.

The "n" job, "m" machine scheduling method has three significant problems,

discussed below.

* The method is slow in a real world environment. Using combinatorial mathematics,
combining five jobs with five machines results in 25 million possible
combinations [Ref. 221. This type of computation is capable of slowing a FMS,
normally supported by a mini-computer, to a crawl. Even calculations taking a few
minutes may produce a schedule which is already obsolete by the time it is
implemented.

* The method does not account for the dynamic nature of a FMS. Events such as
material shortages, tool breakages, urgent or modified jabs and computer faults
require significant changes in the rules which the method is based upon [Ref. 22].
Again, the method's slow response time will result in the use of out-of-date schedules.

* Modifications are time consuming, expensive and difficult. New rules must be

52

developed and implemented, then the scheduling method must be run. The result.

again, is a schedule which may require further modification to make it current.

These shortcomings, along with the lack of integration common to all forms of CIM

systems, are exactly the type of problems the Manufacturing Data Model, presented in

Chapter 3, was developed to correct. In the next chapter, we will apply the model to

FMS.

53

V. APPLYING THE MANUFACTURING DATA MODEL

A. INTRODUCTION

In Chapter 3. we introduced the Manufacturing Data Model, a data-oriented

approach to true integration of the basic manufacturing functions. Chapter 4 reviewed a

manufacturing function within Computer Integrated Manufacturing known as Flexible

Manufacturing Systems (FMS). In this chapter, we intend to show the power of the

Manufacturing Data Model by applying it to a FMS. This thesis will conclude with

recommendations for further research in this area.

The Flexible Manufacturing System, as we presented in Chapter 4, is a collection of

computer-controlled cells, or semi-independent workstations, designed to manufacture an

assortment of products at low or medium volumes [Ref. 61. One characteristic of a FMS

is that it is used to produce one product at a time, that is, a particular FMS will only be

used to produce a pencil sharpener or only be used to produce a can opener. It will not

be used to produce both pencil sharpeners and can openers simultaneously. Thus the

scheduling problem in the FMS environment reduces to scheduling multiple FMS; for

instance, using FMS I to produce pencil sharpeners and FMS 2 to produce can openers.

This work has been done in [Ref. 2] and will not be discussed in this thesis. Instead, we

will focus on using the Manufacturing Data Model to perform the equivalent of process

planning on an FMS. We will begin by looking at how the Manufacturing Data Model

can be used to develop machine programs for the FMS. Before delving into the FMS.

however, we will look at how the Manufacturing Data Model has been applied in

previous work. We will begin by looking at the traditional approach to process planning.

54

B. THE CONVENTIONAL APPROACH TO PROCESS PLANNING

Process planning is the development of a specification defining the operations which

must be performed on a part, or several parts, in order to produce a particular finished

item. Traditionally, process planning has been performed manually by an industrial

engineer. working with design drawings and his knowledge of the plant's equipment.

Condiderable effort is made to maximrize the efficient use of the plant's equipment,

minimizing points where parts back-up, awaiting an available machine ("bottlenecks"),

as well as points where machines sit idle. Obviously, this manual approach is very

labor-intensive, inexact, and ripe for automation. In fact, automated process planning

schemes have been developed but they are not integrated into the complete

manufacturing and design functions. They may use specially produced data or translated

data from the design process and their output of these automated schemes, rather than

being in a form which could be applied directly on the manufacturing floor, must instead

be translated again prior to use. While this approach removes much of the human error

in process planming and saves considerable time, it should be viewed as a step on the road

to true integration. In truly integrated process planning, design data in a specified format

is passed directly to a process planning application, processed, and passed on to other

manufacturing functions (scheduling, shop floor layout, business applications, etc.) for

direct application without translation. The essence of this truly integrated approach is the

absence of translators and a minimum of human intervention beyond the boundaries of

the particular manufacturing functions. This is the goal which the Manufacturing Data

Model attempts to achieve.

C. THE MANUFACTURING DATA MODEL APPROACH

Wu and Madison, in their work in process planning [Ref. 61, approach the subject

from a data-oriented, rather a than process-oriented, approach. They view process

55

planning as divided into four phases. Their first phase involves a gross decision regarding

the level of machining or assembly required to produce a given piece. In an example.

they consider three possibilities: I) a piece could be machined from a casting, 2) a piece

could be machined from raw stock or 3) a piece could be assembled from smaller parts or

assemblies. The first and second possibilities involve parts manufacturing, the stepwise

changes to a part as it progresses from an unmachined state to a finished, machined

condition [Ref. 61. The third possibility, assembly, is the combination of two or more

parts or sub-assemblies to produce a finished product.

In the Manufacturing Data Model data oriented approach, the second phase in

process planning involves selecting and sequencing the appropriate tools and procedures

as required by the decision made in the first phase. This phase determines the sequence

of steps the part will follow within the shop, from the point where it is delivered to the

machine, through the various machining and assembly processes, to the point where it

leaves.

The third phase in the process planning example presented in [Ref. 61 selects the

appropriate machine tool for each operation chosen in the second phase. For example, if

a part is to be machined and then bored, this phase would involve selecting the proper

machining equipment (milling machine, grinding machine, etc.) and boring equipment

(drill press, clamping pallet, etc.). This phase does not consider the actual availability of

machines on the floor, but instead describes process details such as cut and feed rates, cut

sequences, cleaning techniques and computation of individual and overall process times.

The fourth phase selects individual tool types for the equipment selected in phase

three. If a drill press was selected in phase three, the industrial engineer would select a

3/4 inch bit in this phase. Availability of tools is not a consideration.

56

Once these four phases are addressed, the industrial engineer portrays alternative

process plans for a particular product or set of related products as an acyclic directed

graph, depicting all possible choices from each manufacturing activity. Figure 25 shows

an example of one of two alternative process plans for the manufacture of a can opener.

opener

Figure 25. Graph of Alternative Process Plans

57

deic

Using this example, we will step through the activities Wu and Madison use to

semantically describe the process planning evolution.

The industrial engineer can begin development of a process plan either from scratch

or by modifying a previously determined process plan. A conceptual schema becomes

the basis for an original process plan. This is th' same conceptual schema which the

Manufacturing Data Model utilizes in product design. The initial step is to create an

instance of the type represented by the conceptual schema. An example of such a

schenia is shown in Figure 26. Once this instance of type Can Opener is complete. the

aevelopment of the process plan shifts to a bottom-up approach. The engineer chooses a

component from the lowest level of the conceptual schema and defines the process plans

opener

Iasseambly assembl

handle handler v•tbaedic
[a:ssem bly

Figure 26. Conceptual Schema for Product Type Can Opener

58

foi these primitive components, in our case, the blade, the turning device and the handle.

After the lowest level process plans are developed, the plans for the next higher level, the

blade and handle assemblies, are defined. The levels are related by the aggregation

abstraction concept which implies that a process plan at one level need only consider the

process plans at the next lower level, in other words, an assembly procedure. The

process plan definition continues upward. level by level, until the top level is included.

The use of aggregation considerably simplifies the process planning procedure in

that it parallels the human thought process in product design and manufacture. Humans

tend to consider an item as an aggregation of smaller subassemblies.

Definition of primitive level process plans requires the engineer to make a

determination as to which information can be specified directly and which must be

described later, in the form of parameters. The Manufacturing Data Model can hold

these parameter values undefined until the generic process plan is used for production.

They cite as an example in their work a machined cut. Machine tool and machine type

can be specified during development of the process plan. Dimensions of the cut may

remain undefined, or parameterized, until the dimensions of the workpiece are specified

and the generic process plan is made workpiece-specific.

If a previously defined process plan is to be modified to produce a new plan. the

industrial engineer would begin with the version hierarchy for the type of product

concerned. Figure 27 shows a simple version hierarchy for product type Can Opener.

The engineer would first choose the particular version closest to the process plan he is

considering. He would then create an instance of the selected version and modify it,

level by level as described above, using the conceptual schema as a guide. The

completed process plan would then be added to the version hierarchy, as shown in Figure

28. The Wu-Madison approach to process planning reduces the complexity of this

59

carn

opener|

f b uilIt -in no
cokscrew corkscre w

Figure 27. Version Hierarchy for Product Type Can Opener

60

rc a n j

oLAII-iflnnagn no hanging
oring

Figure 28. Updated Version Hierarchy for Product Type Can Opener

manufacturi~ng function through the use of abstraction concepts and reuse of generic

process plans. The model is directly applicable to Flexible Manufacturing Systems.

D. FLEXKIBLE MANUFACTURING SYSTEMS

Process planning, scheduling and Flexible Manufacturing Systems are similar in

several aspects. In all three cases, the design engineer must integrate the competing

demands of two or more process plans with the limited manufacturing resources

available. Modeling techniques applicable to one should, with minimal modification,

apply to the others. In this section, we will develop a simple FMS, to be used later when

we apply the Manufacturing Data Model.

61

An FMS is composed of several automated, prograrmnable cells. each comprised of

related machines. For example, a machining cell nay include a controller. a milling

machine, a tool magazine and a part holder. A part washing cell might include a

controiler and a washing robot. These cells are couiected by a Uanspoftation svsieni,

usually some fom- of robot-operated pallet. A parts and material storage facility, or

warehouse, supports the overall system. Figure 29 shows a basic FMS.

Chapter 4 discussed the basis for current scheduling techniques for FMS. These

systems are scheduled and programmed using combinatorial mathematical procedures.

In general, these techniques are effective in stable environments. However, if change is

introduced into the FMS, either in the fonn of a new product to be manufactured, a

disabled cell, or a change in product design, the FMS responds slowly due to the nature

of the programming/scheduling process. Some system to use design data directly in the

programming/scheduling environment, coupled with a system which could archive

FLEXIBLE MANUFACTURING SYSTEM

Machining Call Part Washing Cell

[controller I Icontroller I system controlieri

milling machine nwashng robot j transport system

tool magazine storage facility

part holder

Figure 29. Simple Flexible Manufacturing System

62

previously used schedules for other products, would significantly improve the efficiency

of a FMS. The Manufacturing Data Model offers these capabilities.

E. APPLYING THE MANUFACTURING DATA MODEL TO FMS

The strength of the Manufacturing Data Model is derived from the use of several

abstraction concepts to simplify and provide flexibility to the modeling of several major

manufucturing functions. In this section, we will address the applicability of the model

in support of FMS.

The Manufacturing Data Model makes use of the aggregaton,

generalization/specialization, version hierarchy, instantiation and instance hierarchy

abstraction concepts to describe the process planning, scheduling and shop floor layout

problems. We will use these abstractions to address the FMS programming situation.

Aggregation is the abstraction of a set of objects and their relationships into a higher

level object [Ref. 141. This concept permits the designer to work at the appropriate level

of detail, hiding unnecessary details of implementation.

The simple FMS, depicted in Figure 29, consists of an aggregation of a machining

cell, a part washing cell, a controller, a storage facility and a transportation station. The

machining cell and the part washing cell are aggregations, that is, they are composed of

lower level, or molecular, objects. The controller, storage facility and transportation

system are molecular objects. In the Manufacturing Data Model, the interface of an

aggregation is determined by the interfaces of its molecular components [Ref. 61. The

function, or implementation, of an aggregation is likewise determined by the functioning

of its molecular components. In other words, the function of the part washing cell is

determined by the function of the controller and the robot.

The generalization/specialization abstraction concept [Ref. 14] is used in the

Manufacturing Data Model to relate types and subtypes. Types are generalizations of

63

subtypes, as described in the can opener example in section C above. Subtypes are an

important aspect of the Manufacturing Data Model as di!,erent subtypes are allowed to

have different sets of attributes. Types and subtypes can function as primitive entities

from which versions and instances can be defined.

In Figure 30, we show a generalization of a FMS. In this example, FMS is a

generalization of COMAO FMS (a particular make of FMS) and other FMS w/i same

factory (representing other FMS within the same factory). Likewise, COMAO FMS is

a generalization of the specific cells which comprise it. Conversely, lathe tool is a

specialization of tool magazine.

Wu and Madison define a version of a type as a molecular object with interface

details specified and implementation details unspecified. By defining a version in this

manner, the version can be plugged, unplugged, or partially plugged [Ref. 17]. Figure 31

depicts an object of type machining cell with an object version VI tapping machine of

type machining cell. The object of type machining cell has its interface defined, which

is represented by the shaded interface box. Implementation, or function, details,

however, are not specified as depicted by the unshaded implementation box. Object Vl

has identical interface details as its object type machining cell and has some

implementation, or function, details specified, represented by the partially shaded

implementation box.

As we described in Chapter 2, versions are allowed to have two types of attributes.

One type is inherited from the object type and passes on the interface characteristics of

the object type. Using our example, the tapping machine inherits interface

characteristics from the object of type machining cell. The other type of attributes are

those specific to that particular version. These are the attributes which differentiate one

version of a specified type from another of the same type.

64

mracnrning cell (5) control compue tool magazi 9e washing ceill

14 mm bit l5mm bi 16 bit mm

Figure 30. Example of Generalization/Specialization in FMS

65

Machine
type

tool onslhining cell

cut 00e111

nach'ne tapping Ocipoct• VI macnine lapping Instanfce 11

version instance
tOOt 100t I mm

- l appppiw g mctwfew 4nlVn ~' Ifom

CA O*Otnh Cut OeoIh 4 m nfho hole

Figure 31. Example of Versions in FMS

Wu and Madison use the idea of parameterized versions to specify implementation

details of a particular object. This concept is valuable in,,,,i.-n- implementation details

for an instance of a type, an object in which implementation details are not specified. In

this case, an instance of an object type is produced rather than an instance of one of its

versions. This instance of an object type is called a parameterized version. In other

words, defining an instance of a specified object type produces a socket which will accept

any version of that specified type. Different versions can be plugged into the sockets,

creating a unique FMS implementation.

The next abstraction concept used in the Manufacturing Data Model is the creation

of an object by instantiation. Object types and object vrsions are capable of being

instantiated [Ref. 171. Instantiating a type produces a copy of a process plan, or

66

o • Al .. .I II I I II I - II I I

schedule, or shop floor layout, or in the case of a FMS. a FMS programn. In Figure 32. a

simple FMIS programn is depicted as an object type. Also shown is a version of the object

type, instantiated to produce a particular product. The object type itself can also be

instantiated, as shown.

FMS program

cu~t object typo
rotate
wash FMS program
rnsoect

FMS program FMS program
cut yes version cu Minstance

oae yes produce machined piece produce Cylindet heaad
as, es of obec watypesi of object typo

wasn yet ' FMS priogra m was al Cude F MS program

ctFMS prga instance

rotate produce cylinder head
Was?, of version

produce machined piece

Figure 32. Instantiation

67

The instantiated object type can be considered a working copy of the object type and

will function as the starting point for a new FMS program. Since this working copy is

instantiated from its parent type, this implies that implementation (function) details are

not specified and must be developed from scratch. hi our example, the program on the

right in the figure is instantiated from its parent type. The function of this program is

awaiting definition.

If a FMS program is instantiated from a version of the object type, such as the

program on the left, any implementation details specified in the version would be

inherited by the new program. In other words, if the function of the version is produce

cylinder head, the function of the instantiated version would also be produce cylinder

head.

The final abstraction concept which the Manufacturing Data Model makes use of is

the version hierarchy. The basic definition of a version hierarchy is a hierarchy of

versions, with increasing implementation detail specified as you proceed to lower

levels [Ref. 61. As described in Chapter 2, the version hierarchy differs from the type

generalization hierarchy is that different versions of an object have the same set of

attributes, but not necessarily the same values, while different types may not necessarily

have the same set of attributes. In Figure 33, we have depicted a version hierarchy of the

FMS program manufacture crankshaft. Manufacture crankshaft is a type, while

manufacture 4-cylinder crankshaft and manufacture 8-cylinder crankshaft are subtypes

of Manufacture crankshaft. High horsepower and economY are subtypes of

manufacture 8-cylinder crankshaft. Two mutually exclusive versions of manufacture 8-

cylinder crankshaft are also depicted, standard size and metric size.

68

ri

Manufacture
CMSnprhgrt

Crankhaft of type

Ra -,. Rr_

Ma-nufacture Crankshaft

Was, wash

anacue MnfcueManufacture Manuf;acture

Standard Size Metric Size Standard Size Metric Size

Figure 33. Version Hierarchy of FMS Program Manufacture Crankshaft

F. A FMS EXAMPLE

In the section above, we made repeated reference M the Manufacturing Data Model.

in this section, we will develop an example by following thie steps an industrial engineer

would follow in programming an FMS to produce a crankshaft using the Manufacturing

Data Model. We will assume the engineer must develop the program from scratch.

69

S- II I |1 I -- --. I I

Initially. the industrial engineer must develop or acquire a top level product drawing

to be used as a conceptual schema for the particular piece to be produced. It should be

stressed that the engineer needs to be familiar with the product before the programming

procedure can begin. In addition, he must be intimately familiar with the capabilities of

the FMS in his factory. He can begin the programuning process by considering the

conceptual schema for the FMS programs he will be using. Figure 34 represents the

conceptual schema we will use in this example.

Smanufacture on FMS

manufacture Jmanufacture

engine parts pump parts

manuiaclure Imanufacture manufacture manufacture manufacture

eng'•e block cylinder head crankshaft housing impoeler

casting bearing

iCorm

bear
ingp nis

be aringI

wash casti ng

Figure 34. Conceptual Schema of FMS Programs

70

As the next step. the engineer creates an instance of the FMS programn type to be

used. Here, we will produce an instance of program ty-pe Manufacture on FNIS nainel.,

nUanufdwtUre crankshaft Figure 35 depicts this instance.

The third step requires the engineer to identify the component at the lowest level of

the schema. In our example, this component would be the subprogram entitled wash

casting. Beginning with this subprogram. the engineer develops machine programs for

the FMS for each primitive level component. For our simple example, he must develop

programs for the FMS for the subprograms grind casting, wash casting, polish casting.

manufacture on FMS program type
manutfcture on FMS

manufacture crartksftaft

grin catin poish casting form bearing polish castn

wash castingI

Figure 35. Instance of Program Type Manufacture on FMS

71

form bearing and polish bearings, Simplified examples of these subprograms are shown

in Figure 36. The engineer must ascertain which information can be specified and which

must be parametertzed, to be specified later. hi our example, all of the subprograms

except grind casting are fully specified. Let us assume that the Design Department is

considering implementation of a revised design. In this case, the grind casting program

is left parameterized, awaiting further information from Design. This circumstance is

depicted in Figure 37. Following the development of these programs, the engineer

maldnufacture Cr*nll~f

P01.8,. Cost.ng Wasn Costing Grind Casting Farm Georing Ma, Bearing

A-ceo! Oalfe. 1. Omne, door. I Accep' Daliet I Accept altell ACCeT Pallel

2 Pw• s face 2. Accept Dallie 2- Gnrd face 2 Bert mletal 2 POlSet face

o~r~v a- 3. Spray Pan 3 Rotate part 3. Rotate pain Pa"~teeOfe

4. Rotate part 4. GnnO aide 4 61 oa

5 Spray Dan 5 Rotate Dart 5. Cut goove

6 Ory Dart 6. GrMno PIca 6 Rentmove Pallet

7w Open odor 7 Rmoe oat,@,

Figure 36. Simplified Examples of Subprograms

72

Figure 37. Primitive Level Programs

considers the next level up in the schema.

The FMS program for the next higher level in our example entails inspection of the

components. Following inspection, assembly is performed. The bearing is fitted to the

cranUhaft, making a crankshaft assembly. Both inspection and assembly require FMS

programs. At this point, the process is complete.

One unique aspect of a FMS is the inter-cell transportation system, the integral

system which moves parts and assemblies from one cell to another within a FMS. The

73

transportation cell is not addressed in this example but rather it is treated as a separate

entity from the other cells in the FMS. This is analagous to the process planning

sitution, where the movement of parts and assemblies, represented by the lines on the

graphical representation of the conceptual schema, is not considered in the development

of the process plan.

The Manufacturing Data Model gives us the ability to use the same data model in all

of the manufacturing functions. With minimal modifications, our simple example above

could be modified to model the data needs of design, planning or business applications.

This capability is the primary advantage of the Model and stands it apart from the rest of

the high level data models. In addition, the Manufacturing Data Model has the ability to

archive previously used designs and programs, providing a starting point for future

efforts and minunizing any duplication of effort. These advantages give the

Manufacturing Data Model the potential for increasing the efficiency and productivity of

the computer integrated factory.

G. CONCLUSIONS

In the modem marketplace, where the bottom line is the primary concern and where

the bottom line is more and more affected by efficiency and productivity, Computer

Integrated Manufacturing has become a viable route to business success. Computer

Integrated Manufacturing is, however, a misnomer in that the integrated refers to

integrating computers into manufacturing, rather than using the capabilities of computers

to integrate the various functions of manufacturing. In this thesis, we have referenced

previous works which identify three approaches to correcting this situation: the high level

approach. the centralized database approach, and the low level approach. In Chapter 2.

we identified shortcomings in the high level and centralized database approaches such as

high cost, the limitations of current teclhology and limited gains in productivity anid

74

S =.. ,== i~ l h ,=m 'II I I IIA

efficiency. We identified a specific low level approach, implementing the Manufacturing

Data Model, which shows great promise in capturing dhe semantics of the manufacturing

environnent.

The Manufacturing Data Model has been applied, in previous work, to the shop

floor layout, process planning and scheduling functions. In these cases, the fnodel

demonstrated a reduction in complexity and increased flexibility through the use of

several abstraction concepts. Their unique approach, which is data- oriented rather than

process-oriented, provides a solution to a complex manufacturing problem.

Flexible Manufacturing Systems, a manufacturing function within Computer

Integrated Manufacturing, is a technology which has attempted to integrate

manufacturing functions. While the goal of these systems is to integrate their

manufacturing cells, in most cases, they have fallen short and instead function as a group

of physically proximate numerically controlled machines.

In this chapter, we applied the Manufacturing Data Model to FMS. The mode;

proved capable of modeling the semantics in a simple example involving the

manufacture of a can opener in a FMS. What appeared to be a complex task, integrating

a complicated machine such as a FMS with a simple product such as a can opener.

nonetheless broke down to a very and understandable task using the model.

The Manufacturing Data Model shows the capacity to integrate all of the

manufacturing functions using one data model with no translation. This capacity will

lead to the ability to integrate the Business Office with the Design Department. Design

with the Manufacturing Shop, a FMS with Design, and so forth. This capacity represents

a first step on the path to true, and total, Computer Integrated Manufacturing.

Several areas exist for future research in this topic. One area is the implementation

of the Manufacturing Data Model, actually coding a representation of the model and

75

A_

demonstrating, rather than describing, its effectiveness. Another area would be an

investigation of the applicability of the model to the design and business office functions.

A third area for future research would be the development of a user-interface on a

graphics-based system, such as the IRIS workstation, to allow a generic user to interact

with the model.

76

LIST OF REFERENCES

1. Madison. Dana E., Wilbur. Thomas G., and Wu, C. Thomas, A Data-Oriented
Approach to Integrating Manufacturing Functions. Technical Report, NPS52-87-
024. Naval Postgraduate School, Monterey, CA. June 1987.

2. Madison, Dana E. and Wu, C. Thomas. A Database Approach to Computer
Integrated Manufacturing: Scheduling and Shop Floor Layout. Technical Report,
NPS52-87-047, Naval Postgraduate School, Monterey, CA. November 1987.

3. Bunce, P., "Planning for CIM," The Production Engineer, v. 64 , p. 21, February
1985.

4. Koclian, Anne and Cowan. Derek, Implementing CIM, p. 3, IFS Publications, Ltd.,
1986.

5. Korth. Henry F. and Silberschatz, Abraham, Database System Concepts, pp. 403-
442, Mc Graw-Hill. 1986.

6. Madison, Dana E., A Database Approach to Computer Integrated Manufacturing,
Ph.D. Dissertation, Naval Postgraduate School, Monterey, CA, June 1988.

7. Tsichritzis, D. C. and Lochovsky, F. H., Data Models, pp. 1-59, Prentice-Hall,
1982.

8. Langefors. B., "Information Systems Theory," Information Systems, v. 2,
pp, 207-219, 1977.

9. Abrial. J. R., "Data Semantics," in Data Base Management, ed. J. W. Klinbie and
K. L. Koffeman, pp. 1-59. North-Holland, 1974.

10. Brodie. Michael L. and Ridjanovic, Dzenan, "On the Design and Specification of
Database Transactions," in On Conceptual Modelling, ed. Joachim W. Schmidt,
pp. 277-312, Springer-Verlag, 1984.

11. "CODASYL Data Base Task Group April 71 Report," ACM, 1971.

12. Yao. S. B., Principles of Database Design, vol 1, Prentice Hall, 1985.

13. Biller, H. and Neuhold, E. J., "Semantics of Databases: The Semantics of Data
Models," Information Systems, v. 3, pp. 11-30, 1978.

14. Smith, J. M. and Smith, D. C. P., "Database Abstractions: Aggregation and
Generalization," ACM Transactions on Database Systems, v. 2, pp. 105-133, June
1977.

15. Mylopoulos, J., Bernstein, P. A., and Wong, H. K., "A Language Facility for
Designing Database-Intensive Applications," ACM Transactions on Database
Systems, v. 5, pp. 185-207, 1980.

16. Brodie, M. L., "Association: A Database Abstraction for S,-mantic Modelling,"
2nd International Entiy-Relationship Conference, pp. 577-602, 1981.

17. Batory. D. S. and Kim. Won, "Modeling Concepts for VLSI CAD Objects," ACM
Transactions on Database Systems, v. ! C, pp. 322-346, September 1985.

77

18. Madison, Dana E. and Wu. C. Thomas, An Expert System Interface and Data
Requirements for the Integrated Product Design and Manufacturing Process,
Technical Report, NPS52-86-013, Naval Postgraduate School, Monterey, CA, June
1986.

19. Su, S. Y. W., "Modeling Integrated Manufacturing Data with SAM*," IEEE
Computer, pp. 34-49, January 1986.

20. Codd, E. F., "Extending the Database Relational Model to Capture More
Meaning," ACM Transactions on Database Systems, v. 4, pp. 397-434, December
1979.

21. Mylopoulos, J. and Wong, H. K. T., "Some Features of the TAXIS Data Model,"
Proceedings of the 6th International Conference on Very Large Databases,
pp. 399-410, 1980.

22. Ranky, Paul G., Computer Integrated Manufacturing, pp. 305-428, Prentice/Hall
International. 1986.

78

INITIAL DISTRIBUTION LIST

No. Copies

Defense Technical Information System 2
Cameron Station
Alexandria, Virginia 22304-6145

2. Library, Code 0142 2
Naval Postgraduate School
Monterey, California 93943-5002

3. Director, Information Systems (OP-945)
Office of the Chief of Naval Operations
Navy Department
Washington. D.C. 20350-2000

4. Chairman, Code 52 2
Department of Computer Science
Naval Postgraduate School
Monterey, California 93943-5000

5. Superintendent, Naval Postgraduate School
Computer Technology Programs, Code 37
Monterey, California 93943-5000

6. Professor C. Thomas Wu, Code 52Wq 2
Computer Science Department
Naval Postgraduate School
Monterey, California 93943-5000

7. Mr. and Mrs. David R. Fleischman Sr. 2
15 Brookdale Drive
Williamsville, New York 14221

79

